Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0301519, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578751

RESUMO

Rice blast disease, caused by the fungus Magnaporthe oryzae, poses a severe threat to rice production, particularly in Asia where rice is a staple food. Concerns over fungicide resistance and environmental impact have sparked interest in exploring natural fungicides as potential alternatives. This study aimed to identify highly potent natural fungicides against M. oryzae to combat rice blast disease, using advanced molecular dynamics techniques. Four key proteins (CATALASE PEROXIDASES 2, HYBRID PKS-NRPS SYNTHETASE TAS1, MANGANESE LIPOXYGENASE, and PRE-MRNA-SPLICING FACTOR CEF1) involved in M. oryzae's infection process were identified. A list of 30 plant metabolites with documented antifungal properties was compiled for evaluation as potential fungicides. Molecular docking studies revealed that 2-Coumaroylquinic acid, Myricetin, Rosmarinic Acid, and Quercetin exhibited superior binding affinities compared to reference fungicides (Azoxystrobin and Tricyclazole). High throughput molecular dynamics simulations were performed, analyzing parameters like RMSD, RMSF, Rg, SASA, hydrogen bonds, contact analysis, Gibbs free energy, and cluster analysis. The results revealed stable interactions between the selected metabolites and the target proteins, involving important hydrogen bonds and contacts. The SwissADME server analysis indicated that the metabolites possess fungicide properties, making them effective and safe fungicides with low toxicity to the environment and living beings. Additionally, bioactivity assays confirmed their biological activity as nuclear receptor ligands and enzyme inhibitors. Overall, this study offers valuable insights into potential natural fungicides for combating rice blast disease, with 2-Coumaroylquinic acid, Myricetin, Rosmarinic Acid, and Quercetin standing out as promising and environmentally friendly alternatives to conventional fungicides. These findings have significant implications for developing crop protection strategies and enhancing global food security, particularly in rice-dependent regions.


Assuntos
Ascomicetos , Fungicidas Industriais , Magnaporthe , Oryza , Ácido Quínico/análogos & derivados , Antifúngicos/farmacologia , Fungicidas Industriais/farmacologia , Quercetina/farmacologia , Simulação de Acoplamento Molecular , Oryza/microbiologia , Flavonoides/farmacologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
2.
Sci Rep ; 13(1): 9702, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322049

RESUMO

Human Respiratory Syncytial Virus (RSV) is one of the leading causes of lower respiratory tract infections (LRTI), responsible for infecting people from all age groups-a majority of which comprises infants and children. Primarily, severe RSV infections are accountable for multitudes of deaths worldwide, predominantly of children, every year. Despite several efforts to develop a vaccine against RSV as a potential countermeasure, there has been no approved or licensed vaccine available yet, to control the RSV infection effectively. Therefore, through the utilization of immunoinformatics tools, a computational approach was taken in this study, to design a multi-epitope polyvalent vaccine against two major antigenic subtypes of RSV, RSV-A and RSV-B. Potential predictions of the T-cell and B-cell epitopes were followed by extensive tests of antigenicity, allergenicity, toxicity, conservancy, homology to human proteome, transmembrane topology, and cytokine-inducing ability. The peptide vaccine was modeled, refined, and validated. Molecular docking analysis with specific Toll-like receptors (TLRs) revealed excellent interactions with suitable global binding energies. Additionally, molecular dynamics (MD) simulation ensured the stability of the docking interactions between the vaccine and TLRs. Mechanistic approaches to imitate and predict the potential immune response generated by the administration of vaccines were determined through immune simulations. Subsequent mass production of the vaccine peptide was evaluated; however, there remains a necessity for further in vitro and in vivo experiments to validate its efficacy against RSV infections.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Criança , Humanos , Simulação de Acoplamento Molecular , Vacinas Combinadas , Epitopos de Linfócito B , Anticorpos Antivirais
3.
BMC Pharmacol Toxicol ; 17(1): 46, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27737708

RESUMO

BACKGROUND: In the present study, we investigated the arsenic accumulation in different parts of rice irrigated with arsenic contaminated water. Besides, we also evaluated the protective effects of Corchorus olitorius leaves against arsenic contaminated rice induced toxicities in animal model. METHODS: A pot experiment was conducted with arsenic amended irrigation water (0.0, 25.0, 50.0 and 75.0 mg/L As) to investigate the arsenic accumulation in different parts of rice. In order to evaluate the protective effects of Corchorus olitorius leaves, twenty Wistar albino rats were divided into four different groups. The control group (Group-I) was supplied with normal laboratory pellets while groups II, III, and IV received normal laboratory pellets supplemented with arsenic contaminated rice, C. olitorius leaf powder (4 %), arsenic contaminated rice plus C. olitorius leaf powder (4 %) respectively. Different haematological parameters and serum indices were analyzed to evaluate the protective effects of Corchorus olitorius leaves against arsenic intoxication. To gather more supportive evidences of Corchorus olitorius potentiality against arsenic intoxication, histopathological analysis of liver, kidney, spleen and heart tissues was also performed. RESULTS: From the pot experiment, we have found a significant (p ≤ 0.05) increase of arsenic accumulation in different parts of rice with the increase of arsenic concentrations in irrigation water and the trend of accumulation was found as root > straw > husk > grain. Another part of the experiment revealed that supplementation of C. olitorius leaves with arsenic contaminated rice significantly (p < 0.05) restored the altered haematological parameters and other serum indices towards the normal values. Arsenic deposition pattern on different organs and histological studies on the ultrastructural changes of liver, kidneys, spleen and heart also supported the protective roles of Corchorus olitorius leaves against arsenic contaminated rice induced toxicities. CONCLUSION: Arsenic accumulation in different parts of rice increased dose-dependently. Hence, for irrigation purpose arsenic contaminated water cannot be used. Furthermore, arsenic contaminated rice induced several toxicities in animal model, most of which could be minimized with the food supplementation of Corchorus olitorius leaves. Therefore, Corchorus olitorius can be used as a potential food supplement to the affected people of arsenic prone zone to ensure the food security.


Assuntos
Arsênio/metabolismo , Arsênio/toxicidade , Corchorus , Oryza/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Oryza/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Ratos , Ratos Wistar , Distribuição Tecidual/efeitos dos fármacos , Distribuição Tecidual/fisiologia
4.
Bioinformation ; 9(14): 730-5, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23976830

RESUMO

Macrophomina phaseolina is one of the deadliest necrotrophic fungal pathogens that infect more than 500 plant species including major food, fiber, and oil crops all throughout the globe. It secretes a cocktail of ligninolytic enzymes along with other hydrolytic enzymes for degrading the woody lignocellulosic plant cell wall and penetrating into the host tissue. Among them, lignin peroxidase has been reported only in Phanerochaete chrysosporium so far. But interestingly, a recent study has revealed a second occurrence of lignin peroxidase in M. phaseolina. However, lignin peroxidases are of much significance biotechnologically because of their potential applications in bio-remedial waste treatment and in catalyzing difficult chemical transformations. Besides, this enzyme also possesses agricultural and environmental importance on account of their role in lignin biodegradation. In the present work, different properties of the lignin peroxidase of M. phaseolina along with predicting the 3-D structure and its active sites were investigated by the use of various computational tools. The data from this study will pave the way for more detailed exploration of this enzyme in wet lab and thereby facilitating the strategies to be designed against such deadly weapons of Macrophomina phaseolina. Furthermore, the insight of such a ligninolytic enzyme will contribute to the assessment of its potentiality as a bioremediation tool.

5.
Bioinformation ; 9(4): 187-92, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23519164

RESUMO

Staphylococcus aureus is a gram positive bacterium, responsible for both community-acquired and hospital-acquired infection, resulting in a mortality rate of 39%. 43.2% resistance to methicilin and emerging resistance to Fluroquinolone and Oxazolidinone, have evoked the necessity of the establishment of alternative and effective therapeutic approach to treat this bacteria. In this computational study, various database and online software are used to determine some specific targets of Staphylococcus aureus N315 other than those used by Penicillin, Quinolone and Oxazolidinone. For this purpose, among 302 essential proteins, 101 nonhomologous proteins were accrued and 64 proteins which are unique in several metabolic pathways of S. aureus were isolated by using metabolic pathway analysis tools. Furthermore, 7 essentially unique enzymes involved in exclusive metabolic pathways were revealed by this research, which can be potential drug target. Along with these important enzymes, 15 non-homologous proteins located on membrane were identified, which can play a vital role as potential therapeutic targets for the future researchers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...